第6講 番号付き箱の集合(配列)の学習
第1話 魔方陣について
後に、魔方陣自動生成アプリや
数独問題自動生成アプリなどに挑戦することになっています。
魔方陣の1例を挙げると

11 16
15 12
14
10 13

です。どうなっているか分かりますか。
よく観察して下さい。
なんと横の合計はすべて34です。
それだけですか。
縦の合計もすべて34です。
まだ、ありますよ。
そうです。
2本の対角線の合計も34です。
すべての横・すべての縦・2本の対角線の合計がすべて同じ
方陣(正方形に数字が並んでいる表)を
魔方陣といいます。
よく、魔法陣とかく人がいますが、間違いです。
魔方陣です。漢字も覚えて下さい。
そして、1辺が4のとき、4次魔方陣といいます。
2次魔方陣は存在しませんので、
3次以上の魔方陣が存在します。
例えば、5次魔方陣

13 19 25
18 24 12
10 11 17 23
22 15 16
14 20 21

なら、なんと約22億個もあります。
鏡像や対称移動して重なるものは同じものと見なしても、
約3億個あります。
3次魔方陣が1個、
4次魔方陣が880個
あります。
4次880個に対して5次約3億個です。
では6次魔方陣なら何個存在するのでしょうか。
残念ながら、現時点ではスパコン(スーパコンピュータ)を使って研究しても、
分かっていません。
私が作った最速の魔方陣生成ソフトなら、
6次魔方陣を1秒で数万の単位で生成します。
このソフトを使ったとしても、
計算が終わるまで何百年もかかるでしょう。
まして、26次魔方陣クラスになると、
宇宙時間(宇宙のはじめから終わるまでの時間)
かけて計算させたとしても終了しないでしょう。


さて、
魔方陣(細胞構成法)
をクリックしてコンテンツを有効化してから、実行ボタンを押して下さい。
26次魔方陣などが勢いよく生成されます。
1秒で数百個の単位です。
人間なら、世界中の人(数学者や魔方陣研究家を除く)
が協力して魔方陣を1億年研究したとしても、
1個も出来ないでしょう。
このソフトは決して、
コンピュータに魔方陣の規則性を教えて作らせているのではなく、
コンピュータが自ら試行錯誤で見つけているものです。
コンピュータの能力っていかにすごいか分かります。
興味がわいた皆さんは是非魔方陣の研究をクリックしていろいろなページを見て下さい。

26次魔方陣だと、
扱っている変数は少なくてもどれだけになる分かりますか。
26×26=676個です。
上のソフトは、その数倍の変数を使って魔方陣を作り出しています。
100次魔方陣クラスになると少なくても1万個の変数を用意しなければなりません。
1万個もの変数を用意するには、
名前を考えるだけでも大変です。
どういう芸当を使っているか分かりますか。
講のテーマを見れば予想がつきますね。
答は、番号付き箱(配列)です。
でも、番号付き箱(配列)って何?





第5講第10話へ 第2話へ

a


初心者のための excel 2016 マクロ VBA 入門講義 基礎から応用まで
vc++ c言語 c++ 入門 初心者 基礎から応用まで
eclipse c++ 入門
魔方陣 数独で学ぶ VBA 入門

数独のシンプルな解き方・簡単な解法の研究
VB講義へ
VB講義基礎へ
初心者のための世界で一番わかりやすいVisual C++入門基礎講座
初心者のための世界で一番わかりやすいVisual Basic入門基礎講座

初心者のための世界で一番わかりやすいVBA入門講義(基礎から応用まで)
初心者のための VC++による C言語 C++ 入門 基礎から応用まで第1部
eclipse java 入門
java 入門 サイト 基礎から応用まで
本サイトトップへ