#pragma warning(disable: 4996)
#include<iostream>
#include<stdlib.h> /*callocやrand,srandを使うのに必要*/
#include<ctime>
#include<process.h>
#include<conio.h> //while (!_kbhit()); を使うためのお呪い。
#include <math.h>
#include <cmath>
#include<process.h>
#include <iomanip>
#include <stdio.h>
#include <stdlib.h>
using namespace std;
const size_t th = 12;
void 問題生成関数(size_t g, size_t a);
void 非対称配列関数(size_t a);
void 左右対称配列関数(size_t a);
void 上下対称配列関数(size_t a);
void 点対称配列関数(size_t a);
void 左右上下対称配列関数(size_t a);//対称対称かつ点対称配列でもある。
void ハート型配列関数(size_t a);
void 局所解析関数(size_t s, size_t t, size_t a);
void 代入関数(size_t a);
char 継続 = 1;
size_t* どのスレッドが発見したか示す変数 = (size_t*)calloc(th, sizeof(size_t));
unsigned シード値 = (unsigned)time(NULL);
void 変身の術関数(void* a);
void 初期化0(size_t a);
void 初期化1(size_t a);
void 入力順決定関数(size_t g, size_t a);
size_t 検証関数(size_t a);
size_t 全体リスト構造解析関数(size_t a);
void 解答作成関数(size_t a);
void 問題作成関数(size_t a);
void ライン排除関数(size_t a);
void 相補確定関数(size_t a);
void 三対三確定および排除関数(size_t a);
void リスト法関数(size_t a);
void ライン行排除関数(size_t a);
void ライン列排除関数(size_t a);
void ラインブロック排除関数(size_t a);
void 相補確定とそれによる行排除関数(size_t a);
void 相補確定とそれによる列排除関数(size_t a);
void 相補確定とそれによるブロック排除関数(size_t a);
void 三対三確定および排除行関数(size_t a);
void 三対三確定および排除列関数(size_t a);
void 三対三確定および排除ブロック関数(size_t a);
void ＃排除関数(size_t a);
const size_t RN = 5;
const size_t N = RN * RN;
const size_t N2 = N * N;
void 表示関数3(size_t a);
void 表示関数4(size_t a);
void 表示関数5(size_t a);
size_t m[th][N][N];//問題
size_t mx[th][N][N];//座標（N,N）候補リスト数
size_t wb[th][N][N][N];
//スレッドNにおける座標（N,N）の色塗り 色は入力文字に対応9×9数独なら1から9
size_t rlst[th][N][N][N];
//スレッドNにおける座標（N,N）の候補数字リスト
size_t y[th][N2], x[th][N2];//各スレッドにおいて入力順決定関数を使うときの座標
size_t yy[th][N2], xx[th][N2];
//9×9を例にとると0，1，・・・，80各セル番号を等間隔に飛ぶ座標
//スタート地点も飛ぶ間隔も疑似乱数によってスレッド毎にランダムに与えられる。
size_t cm[th][N][N];//解答
size_t ヒント数, 空欄数[th], cn[th];//各スレッドで解答が発見されると1になる。
size_t S;//左右対称型などのタイプを示す変数
clock_t hj1[th], ow1[th];
//各スレッドの数独を解き始める時間と解き終わったときの時間
clock_t 初期配置数 = 20;
int main() {
	size_t ii[th];
	ヒント数 = 400;
	clock_t hj, ow;//数独
	cout << "数独のタイプ：" << N << "×" << N << endl;
	cout << "初期配置数 = " << 初期配置数 << endl;
	cout << "ヒント数 = " << ヒント数 << endl;
	cout << "スレッド数 = " << th << endl;
	hj = clock();
	シード値 = (unsigned)time(NULL);
	継続 = 1;
	for (size_t i = 1; i < th; i += 1) {
		ii[i] = i;
		_beginthread(変身の術関数, 0, &ii[i]); //新しいスレッドを起動して、そのスレッド上で関数問題生成関数を働かせなさいの命令
	}
	srand(シード値);
	while (1) {
		初期化0(0);
		size_t 選択変数 = 4;
		非対称配列関数(0);
		/*size_t 選択変数;
		if (ヒント数 == 20)選択変数 = rand() % 5; else 選択変数 = rand() % 6;
		if (選択変数 == 0) 左右対称配列関数(0);
		if (選択変数 == 1) 上下対称配列関数(0);
		if (選択変数 == 2) 点対称配列関数(0);
		if (選択変数 == 3) 左右上下対称配列関数(0);
		if (選択変数 == 4) 非対称配列関数(0);
		if (選択変数 == 5) ハート型配列関数(0);*/
		if (継続 == 0)break;
		cn[0] = 0;
		問題生成関数(0, 0);
		if (継続 == 0)break;
		問題作成関数(0);
		if (継続 == 0)break;		
		解答作成関数(0);
		if (cn[0] == 1) {
			ow1[0] = clock();
			どのスレッドが発見したか示す変数[0] = 1;
			継続 = 0;
			goto tobi0;
		}
	}
tobi0:;
	while (継続);
	size_t ik;
	for (size_t i = 0; i < th; i++)if (どのスレッドが発見したか示す変数[i] == 1) { ik = i; break; }
	//数独を見つけたスレッドを特定した。
	for (size_t i = ヒント数; i < N2; i++) {
		m[ik][yy[ik][i]][xx[ik][i]] = 0;
	}
	表示関数5(ik);
	/*if (検証関数(ik) == 1)cout << "〇"; else cout << "×";
	cout << endl;*/
	FILE* fp;
	/*ファイル(save.csv)に書き込む*/
	if ((fp = fopen("a.csv", "w")) != NULL) {
		for (size_t i = 0; i < N; i++) {
			for (size_t j = 0; j < N; j++) {
				fprintf(fp, "%d,\n", cm[ik][i][j]);//問題
			}
		}
		for (size_t i = 0; i < N; i++) {
			for (size_t j = 0; j < N; j++) {
				/*カンマで区切ることでCSVファイルとする*/
				fprintf(fp, "%d,\n", m[ik][i][j]);//解答
			}
		}
	}
	/*忘れずに閉じる*/
	fclose(fp);
	ow = clock();
	cout << "数独解法時間は" << (double)(ow1[ik] - hj1[ik]) / CLOCKS_PER_SEC << "秒です。" << endl;
	cout << "数独生成時間は" << (double)(ow - hj) / CLOCKS_PER_SEC << "秒です。" << endl;
	while (!_kbhit()); //待機させるための命令
	return 0;
}
void 変身の術関数(void* aa) {
	size_t a = *(size_t*)aa;
	srand(シード値 - 19 * (a + 1));
	while (1) {
		初期化0(a);
		size_t 選択変数 = 4;
		非対称配列関数(a);
		/*size_t 選択変数;
		if (ヒント数 == 20)選択変数 = rand() % 5; else 選択変数 = rand() % 6;
		if (選択変数 == 0) 左右対称配列関数(a);
		if (選択変数 == 1) 上下対称配列関数(a);
		if (選択変数 == 2) 点対称配列関数(a);
		if (選択変数 == 3) 左右上下対称配列関数(a);
		if (選択変数 == 4) 非対称配列関数(a);
		if (選択変数 == 5) ハート型配列関数(a);*/
		cn[a] = 0;
		問題生成関数(0, a);
		if (継続 == 0)return;
		問題作成関数(a);
		if (継続 == 0)return;
		空欄数[a] = N2 - ヒント数;
		hj1[a] = clock();
		解答作成関数(a);
		if (cn[a] == 1) {
			ow1[a] = clock();
			どのスレッドが発見したか示す変数[a] = 1;
			継続 = 0;
			return;
		}
	}
}
void 表示関数3(size_t a) {
	for (int i = 0; i < N + 1; i++) {
		if (i % RN == 0) {
			cout << " ";
			for (int j = 0; j < N + 3; j++) {
				cout << "- ";
			}
			cout << " ";
			cout << endl;
		}
		if (i == N)break;
		for (int j = 0; j < N + 1; j++) {
			if (j % RN == 0) {
				cout << "| ";
			}
			if (j < N) {
				if (cm[a][i][j] == 0)cout << "* "; else cout << cm[a][i][j] << " ";
				//問題
			}
		}
		cout << endl;
	}
	for (int i = 0; i < N + 1; i++) {
		if (i % RN == 0) {
			cout << " ";
			for (int j = 0; j < N + 3; j++) {
				cout << "- ";
			}
			cout << " ";
			cout << endl;
		}
		if (i == N)break;
		for (int j = 0; j < N + 1; j++) {
			if (j % RN == 0) {
				cout << "| ";
			}
			if (j < N) {
				if (m[a][i][j] == 0)cout << "* "; else cout << m[a][i][j] << " ";//問題
			}
		}
		cout << endl;
	}
}
void 表示関数4(size_t a) {
	for (int i = 0; i < N + 1; i++) {
		if (i % RN == 0) {
			cout << " ";
			for (int j = 0; j < N + 18; j++) {
				cout << "- ";
			}
			cout << " ";
			cout << endl;
		}
		if (i == N)break;
		for (int j = 0; j < N + 1; j++) {
			if (j % RN == 0) {
				cout << "|";
			}
			if (j < N) {
				if (m[a][i][j] == 0) {
					cout << " ** ";//問題
				}
				if (m[a][i][j] > 0 && m[a][i][j] < 10) {
					cout << " " << m[a][i][j] << " ";//問題
				}
				if (m[a][i][j] >= 10) {
					cout << " " << m[a][i][j] << " ";//解答
				}
			}
		}
		cout << endl;
	}
	for (int i = 0; i < N + 1; i++) {
		if (i % RN == 0) {
			cout << " ";
			for (int j = 0; j < N + 18; j++) {
				cout << "- ";
			}
			cout << " ";
			cout << endl;
		}
		if (i == N)break;
		for (int j = 0; j < N + 1; j++) {
			if (j % RN == 0) {
				cout << "|";
			}
			if (j < N) {
				if (cm[a][i][j] == 0) {
					cout << " ** ";//解答
				}
				if (cm[a][i][j] > 0 && cm[a][i][j] < 10) {
					cout << " " << cm[a][i][j] << " ";//解答
				}
				if (cm[a][i][j] >= 10) {
					cout << " " << cm[a][i][j] << " ";//解答
				}
			}
		}
		cout << endl;
	}
}
void 表示関数5(size_t a) {
	for (int i = 0; i < N + 1; i++) {
		if (i % RN == 0) {
			cout << " ";
			for (int j = 0; j < N + 27; j++) {
				cout << "- ";
			}
			cout << " ";
			cout << endl;
		}
		if (i == N)break;
		for (int j = 0; j < N + 1; j++) {
			if (j % RN == 0) {
				cout << "|";
			}
			if (j < N) {
				if (m[a][i][j] == 0) {
					cout << " ** ";//問題
				}
				if (m[a][i][j] > 0 && m[a][i][j] < 10) {
					cout << " " << m[a][i][j] << " ";//問題
				}
				if (m[a][i][j] >= 10) {
					cout << " " << m[a][i][j] << " ";//解答
				}
			}
		}
		cout << endl;
	}
	for (int i = 0; i < N + 1; i++) {
		if (i % RN == 0) {
			cout << " ";
			for (int j = 0; j < N + 27; j++) {
				cout << "- ";
			}
			cout << " ";
			cout << endl;
		}
		if (i == N)break;
		for (int j = 0; j < N + 1; j++) {
			if (j % RN == 0) {
				cout << "|";
			}
			if (j < N) {
				if (cm[a][i][j] == 0) {
					cout << " ** ";//解答
				}
				if (cm[a][i][j] > 0 && cm[a][i][j] < 10) {
					cout << " " << cm[a][i][j] << " ";//解答
				}
				if (cm[a][i][j] >= 10) {
					cout << " " << cm[a][i][j] << " ";//解答
				}
			}
		}
		cout << endl;
	}
}
void 解答作成関数(size_t a) {
	size_t i, k空欄数;
	if (全体リスト構造解析関数(a) == 1) {
		cn[a] = 2;
		return;
	}
	for (i = 0; i < N; i++) {
		k空欄数 = 空欄数[a];
		ライン排除関数(a);
		if (cn[a] > 0) return;
		if (空欄数[a] == 0) {
			cn[a] = 1;
			return;
		}
		相補確定関数(a);
		三対三確定および排除関数(a);
		＃排除関数(a);
		if (空欄数[a] == 0) {
			cn[a] = 1;
			return;
		}
		リスト法関数(a);
		if (cn[a] > 0)return;
		if (空欄数[a] == 0) {
			cn[a] = 1;
			return;
		}
		if (k空欄数 == 空欄数[a]) {
			cn[a] = 0;
			return;
		}
	}
}
size_t 全体リスト構造解析関数(size_t a) {
	size_t i, j;
	for (i = 0; i < N; i++) {
		for (j = 0; j < N; j++) {
			if (m[a][i][j] == 0) {
				局所解析関数(i, j, a);
				if (mx[a][i][j] == 0) {
					return(1);
				}
			}
		}
	}
	return(0);
}
void ライン行排除関数(size_t a) {
	size_t i, j, k, w, jk, kk, s, t;
	for (i = 0; i < N; i++) {
		for (j = 0; j < N; j++) {
			w = 0;
			for (k = 0; k < N; k++) {
				if (m[a][j][k] == 0) {
					if (wb[a][j][k][i] == 0) {
						jk = j;
						kk = k;
						w = w + 1;
					}
				}
			}
			if (w == 1) {
				if (空欄数[a] == 0) {
					cn[a] = 2;
					return;
				}
				m[a][jk][kk] = i + 1;
				空欄数[a] = 空欄数[a] - 1;
				if (空欄数[a] == 0) return;
				for (k = 0; k < N; k++) {
					if (m[a][jk][k] == 0) {
						wb[a][jk][k][m[a][jk][kk] - 1] = 1;
					}
					if (m[a][k][kk] == 0) {
						wb[a][k][kk][m[a][jk][kk] - 1] = 1;
					}
					s = RN * (jk / RN) + (k / RN);
					t = RN * (kk / RN) + (k % RN);
					if (m[a][s][t] == 0) {
						wb[a][s][t][m[a][jk][kk] - 1] = 1;
					}
				}
				for (k = 0; k < N; k++) {
					if (m[a][jk][k] == 0)局所解析関数(jk, k, a);
					if (m[a][k][kk] == 0) 局所解析関数(k, kk, a);
					s = RN * (jk / RN) + (k / RN);
					t = RN * (kk / RN) + (k % RN);
					if (m[a][s][t] == 0)局所解析関数(s, t, a);
				}
			}
		}
	}
}
void ライン列排除関数(size_t a) {
	size_t i, j, k, w, jk, kk, s, t;
	for (i = 0; i < N; i++) {
		for (j = 0; j < N; j++) {
			w = 0;
			for (k = 0; k < N; k++) {
				if (m[a][k][j] == 0) {
					if (wb[a][k][j][i] == 0) {
						jk = j;
						kk = k;
						w = w + 1;
					}
				}
			}
			if (w == 1) {
				if (空欄数[a] == 0) {
					cn[a] = 2;
					return;
				}
				m[a][kk][jk] = i + 1;
				空欄数[a] = 空欄数[a] - 1;
				if (空欄数[a] == 0) return;
				for (k = 0; k < N; k++) {
					if (m[a][kk][k] == 0) {
						wb[a][kk][k][m[a][kk][jk] - 1] = 1;
					}
					if (m[a][k][jk] == 0) {
						wb[a][k][jk][m[a][kk][jk] - 1] = 1;
					}
					s = RN * (kk / RN) + (k / RN);
					t = RN * (jk / RN) + (k % RN);
					if (m[a][s][t] == 0) {
						wb[a][s][t][m[a][kk][jk] - 1] = 1;
					}
				}
				for (k = 0; k < N; k++) {
					if (m[a][kk][k] == 0)局所解析関数(kk, k, a);
					if (m[a][k][jk] == 0)局所解析関数(k, jk, a);
					s = RN * (kk / RN) + (k / RN);//ブロック部分を動く ｙ座標
					t = RN * (jk / RN) + (k % RN);//ブロック部分を動く ｘ座標
					if (m[a][s][t] == 0)局所解析関数(s, t, a);
				}
			}
		}
	}
}
void ラインブロック排除関数(size_t a) {
	size_t i, j, k, w, sk, tk, s, t, s1, t1;
	for (i = 0; i < N; i++) {
		for (j = 0; j < N; j++) {
			w = 0;
			for (k = 0; k < N; k++) {
				s = RN * (j / RN) + (k / RN);
				t = RN * (j % RN) + (k % RN);
				if (m[a][s][t] == 0) {
					if (wb[a][s][t][i] == 0) {
						sk = s;
						tk = t;
						w = w + 1;
					}
				}
			}
			if (w == 1) {
				if (空欄数[a] == 0) {
					cn[a] = 2;
					return;
				}
				m[a][sk][tk] = i + 1;
				空欄数[a] = 空欄数[a] - 1;
				if (空欄数[a] == 0) return;
				for (k = 0; k < N; k++) {
					if (m[a][sk][k] == 0) {
						wb[a][sk][k][m[a][sk][tk] - 1] = 1;
					}
					if (m[a][k][tk] == 0) {
						wb[a][k][tk][m[a][sk][tk] - 1] = 1;
					}
					s1 = RN * (sk / RN) + (k / RN);
					t1 = RN * (tk / RN) + (k % RN);
					if (m[a][s1][t1] == 0) {
						wb[a][s1][t1][m[a][sk][tk] - 1] = 1;
					}
				}
				for (k = 0; k < N; k++) {
					if (m[a][sk][k] == 0)局所解析関数(sk, k, a);
					if (m[a][k][tk] == 0)局所解析関数(k, tk, a);
					s1 = RN * (sk / RN) + (k / RN);
					t1 = RN * (tk / RN) + (k % RN);
					if (m[a][s1][t1] == 0)局所解析関数(s1, t1, a);
				}
			}
		}
	}
}
void ライン排除関数(size_t a) {
	ライン行排除関数(a);
	if (空欄数[a] == 0) {
		cn[a] = 1;
		return;
	}
	ライン列排除関数(a);
	if (空欄数[a] == 0) {
		cn[a] = 1;
		return;
	}
	ラインブロック排除関数(a);
}
void 相補確定とそれによる行排除関数(size_t a) {
	size_t i, j, k, w, onoff[N];
	size_t ckotae[N], l;
	for (i = 0; i < N; i++) {
		for (j = 0; j < N; j++) {
			for (k = j + 1; k < N; k++) {
				if (mx[a][i][j] == 2 && mx[a][i][k] == 2) {
					for (l = 0; l < N; l++) {
						onoff[l] = 0;
					}
					for (l = 0; l < 2; l++) {
						onoff[rlst[a][i][j][l] - 1] = 1;
						onoff[rlst[a][i][k][l] - 1] = 1;
					}
					w = 0;
					for (l = 0; l < N; l++) {
						if (onoff[l] == 1) {
							ckotae[w] = l;
							w = w + 1;
						}
					}
					if (w == 2) {
						for (l = 0; l < N; l++) {
							if (l != j && l != k) {
								if (m[a][i][l] == 0) {
									wb[a][i][l][ckotae[0]] = 1;
									wb[a][i][l][ckotae[1]] = 1;
								}
							}
						}
						for (l = 0; l < N; l++) {
							if (l != j && l != k) {
								if (m[a][i][l] == 0) {
									局所解析関数(i, l, a);
								}
							}
						}
					}
				}
			}
		}
	}
}
void 相補確定とそれによる列排除関数(size_t a) {
	size_t i, j, k, w, onoff[N];
	size_t ckotae[N], l;
	for (i = 0; i < N; i++) {
		for (j = 0; j < N; j++) {
			for (k = j + 1; k < N; k++) {
				if (mx[a][j][i] == 2 && mx[a][k][i] == 2) {
					for (l = 0; l < N; l++) {
						onoff[l] = 0;
					}
					for (l = 0; l < 2; l++) {
						onoff[rlst[a][j][i][l] - 1] = 1;
						onoff[rlst[a][k][i][l] - 1] = 1;
					}
					w = 0;
					for (l = 0; l < N; l++) {
						if (onoff[l] == 1) {
							ckotae[w] = l;
							w = w + 1;
						}
					}
					if (w == 2) {
						for (l = 0; l < N; l++) {
							if (l != j && l != k) {
								if (m[a][l][i] == 0) {
									wb[a][l][i][ckotae[0]] = 1;
									wb[a][l][i][ckotae[1]] = 1;
								}
							}
						}
						for (l = 0; l < N; l++) {
							if (l != j && l != k) {
								if (m[a][l][i] == 0) {
									局所解析関数(l, i, a);
								}
							}
						}
					}
				}
			}
		}
	}
}
void 相補確定とそれによるブロック排除関数(size_t a) {
	size_t i, j, k, w, onoff[N], s1, s2, t1, t2, s3, t3, s4, t4;;
	size_t ckotae[N], l;
	for (i = 0; i < N; i++) {
		for (j = 0; j < N; j++) {
			s1 = RN * (i / RN) + (j / RN);
			t1 = RN * (i % RN) + (j % RN);
			for (k = j + 1; k < N; k++) {
				s2 = RN * (i / RN) + (k / RN);
				t2 = RN * (i % RN) + (k % RN);
				if (mx[a][s1][t1] == 2 && mx[a][s2][t2] == 2) {
					for (l = 0; l < N; l++) {
						onoff[l] = 0;
					}
					for (l = 0; l < 2; l++) {
						onoff[rlst[a][s1][t1][l] - 1] = 1;
						onoff[rlst[a][s2][t2][l] - 1] = 1;
					}
					w = 0;
					for (l = 0; l < N; l++) {
						if (onoff[l] == 1) {
							ckotae[w] = l;
							w = w + 1;
						}
					}
					if (w == 2) {
						for (l = 0; l < N; l++) {
							if (l != j && l != k) {
								s3 = RN * (i / RN) + (l / RN);
								t3 = RN * (i % RN) + (l % RN);
								if (m[a][s3][t3] == 0) {
									wb[a][s3][t3][ckotae[0]] = 1;
									wb[a][s3][t3][ckotae[1]] = 1;
								}
							}
						}
						for (l = 0; l < N; l++) {
							if (l != j && l != k) {
								s4 = RN * (i / RN) + (l / RN);
								t4 = RN * (i % RN) + (l % RN);
								if (m[a][s4][t4] == 0) {
									局所解析関数(s4, t4, a);
								}
							}
						}
					}
				}
			}
		}
	}
}
void 相補確定関数(size_t a) {
	相補確定とそれによる行排除関数(a);
	相補確定とそれによる列排除関数(a);
	相補確定とそれによるブロック排除関数(a);
}
void 三対三確定および排除行関数(size_t a) {
	size_t i, j, k, w, onoff[N];
	size_t ckotae[N], l, n;
	for (i = 0; i < N; i++) {
		for (j = 0; j < N; j++) {
			for (k = j + 1; k < N; k++) {
				for (l = k + 1; l < N; l++) {
					if ((m[a][i][j] == RN) && (m[a][i][k] == RN) && (m[a][i][l] == RN)) {
						for (n = 0; n < N; n++) {
							onoff[n] = 0;
						}
						for (n = 0; n < m[a][i][j]; n++) {
							onoff[rlst[a][i][j][n] - 1] = 1;
						}
						for (n = 0; n < m[a][i][k]; n++) {
							onoff[rlst[a][i][k][n] - 1] = 1;
						}
						for (n = 0; n < m[a][i][l]; n++) {
							onoff[rlst[a][i][l][n] - 1] = 1;
						}
						w = 0;
						for (n = 0; n < N; n++) {
							if (onoff[n] == 1) {
								ckotae[w] = n;
								w = w + 1;
							}
						}
						if (w == RN) {
							for (n = 0; n < N; n++) {
								if (n != j && n != k && n != l) {
									if (m[a][i][n] == 0) {
										wb[a][i][n][ckotae[0]] = 1;
										wb[a][i][n][ckotae[1]] = 1;
										wb[a][i][n][ckotae[2]] = 1;
									}
								}
							}
							for (n = 0; n < N; n++) {
								if (n != j && n != k && n != l) {
									if (m[a][i][n] == 0) {
										局所解析関数(i, n, a);
									}
								}
							}
						}
					}
				}
			}
		}
	}
}
void 三対三確定および排除列関数(size_t a) {
	size_t i, j, k, w, onoff[N];
	size_t ckotae[N], l, n;
	for (i = 0; i < N; i++) {
		for (j = 0; j < N; j++) {
			for (k = j + 1; k < N; k++) {
				for (l = k + 1; l < N; l++) {
					if ((m[a][j][i] == RN) && (m[a][k][i] == RN) && (m[a][l][i] == RN)) {
						for (n = 0; n < N; n++) {
							onoff[n] = 0;
						}
						for (n = 0; n < m[a][j][i]; n++) {
							onoff[rlst[a][j][i][n] - 1] = 1;
						}
						for (n = 0; n < m[a][k][i]; n++) {
							onoff[rlst[a][k][i][n] - 1] = 1;
						}
						for (n = 0; n < m[a][l][i]; n++) {
							onoff[rlst[a][l][i][n] - 1] = 1;
						}
						w = 0;
						for (n = 0; n < N; n++) {
							if (onoff[n] == 1) {
								ckotae[w] = n;
								w = w + 1;
							}
						}
						if (w == RN) {
							for (n = 0; n < N; n++) {
								if (n != j && n != k && n != l) {
									if (m[a][n][i] == 0) {
										wb[a][n][i][ckotae[0]] = 1;
										wb[a][n][i][ckotae[1]] = 1;
										wb[a][n][i][ckotae[2]] = 1;
									}
								}
							}
							for (n = 0; n < N; n++) {
								if (n != j && n != k && n != l) {
									if (m[a][n][i] == 0) {
										局所解析関数(n, i, a);
									}
								}
							}
						}
					}
				}
			}
		}
	}
}
void 三対三確定および排除ブロック関数(size_t a) {
	size_t i, j, k, w, onoff[N];
	size_t ckotae[N], l, n;
	size_t s1, s2, s3, s4, t1, t2, t3, t4;
	for (i = 0; i < N; i++) {
		for (j = 0; j < N; j++) {
			s1 = RN * (i / RN) + (j / RN);
			t1 = RN * (i % RN) + (j % RN);
			for (k = j + 1; k < N; k++) {
				s2 = RN * (i / RN) + (k / RN);
				t2 = RN * (i % RN) + (k % RN);
				for (l = k + 1; l < N; l++) {
					s3 = RN * (i / RN) + (l / RN);
					t3 = RN * (i % RN) + (l % RN);
					if ((m[a][s1][t1] == RN) && (m[a][s2][t2] == RN) && (m[a][s3][t3] == RN)) {
						for (n = 0; n < N; n++) {
							onoff[n] = 0;
						}
						for (n = 0; n < m[a][s1][t1]; n++) {
							onoff[rlst[a][s1][t1][n] - 1] = 1;
						}
						for (n = 0; n < m[a][s2][t2]; n++) {
							onoff[rlst[a][s2][t2][n] - 1] = 1;
						}
						for (n = 0; n < m[a][s3][t3]; n++) {
							onoff[rlst[a][s3][t3][n] - 1] = 1;
						}
						w = 0;
						for (n = 0; n < N; n++) {
							if (onoff[n] == 1) {
								ckotae[w] = n;
								w = w + 1;
							}
						}
						if (w == RN) {
							for (n = 0; n < N; n++) {
								if (n != j && n != k && n != l) {
									s4 = RN * (i / RN) + (n / RN);
									t4 = RN * (i % RN) + (n % RN);
									if (m[a][s4][t4] == 0) {
										wb[a][s4][t4][ckotae[0]] = 1;
										wb[a][s4][t4][ckotae[1]] = 1;
										wb[a][s4][t4][ckotae[2]] = 1;
									}
								}
							}
							for (n = 0; n < N; n++) {
								if (n != j && n != k && n != l) {
									s4 = RN * (i / RN) + (n / RN);
									t4 = RN * (i % RN) + (n % RN);
									if (m[a][s4][t4] == 0) {
										局所解析関数(s4, t4, a);
									}
								}
							}
						}
					}
				}
			}
		}
	}
}
void 三対三確定および排除関数(size_t a) {
	三対三確定および排除行関数(a);
	三対三確定および排除列関数(a);
	三対三確定および排除ブロック関数(a);
}
void ＃排除関数(size_t a) {
	size_t i, j, wx, wy, k;
	size_t yk[N][N], xk[N][N];
	for (i = 0; i < N; i++) {
		wy = 0;
		for (j = 0; j < N; j++) {
			wx = 0;
			for (k = 0; k < N; k++) {
				if (m[a][j][k] == 0) {
					if (wb[a][j][k][i] == 0) {
						yk[wy][wx] = j;
						xk[wy][wx] = k;
						wx = wx + 1;
					}
				}
			}
			if (wx == 2) {
				wy = wy + 1;
			}
		}
		if (wy == 2) {
			if (xk[0][0] == xk[1][0] && xk[0][1] == xk[1][1]) {
				for (k = 0; k < N; k++) {
					if (k != xk[0][0] && k != xk[0][1]) {
						if (m[a][yk[0][0]][k] == 0) {
							wb[a][yk[0][0]][k][i] = 1;
						}
						if (m[a][yk[1][1]][k] == 0) {
							wb[a][yk[1][1]][k][i] = 1;
						}
					}
				}
				for (k = 0; k < N; k++) {
					if (k != xk[0][0] && k != xk[0][1]) {
						if (m[a][yk[0][0]][k] == 0) {
							局所解析関数(yk[0][0], k, a);
						}
						if (m[a][yk[1][1]][k] == 0) {
							局所解析関数(yk[1][1], k, a);
						}
					}
				}
				for (k = 0; k < N; k++) {
					if (k != yk[0][0] && k != yk[1][1]) {
						if (m[a][k][xk[0][0]] == 0) {
							wb[a][k][xk[0][0]][i] = 1;
						}
						if (m[a][k][xk[1][1]] == 0) {
							wb[a][k][xk[1][1]][i] = 1;
						}
					}
				}
				for (k = 0; k < N; k++) {
					if (k != yk[0][0] && k != yk[1][1]) {
						if (m[a][k][xk[0][0]] == 0) {
							局所解析関数(k, xk[0][0], a);
						}
						if (m[a][k][xk[1][1]] == 0) {
							局所解析関数(k, xk[1][1], a);
						}
					}
				}
			}
		}
	}
	for (i = 0; i < N; i++) {
		wx = 0;
		for (j = 0; j < N; j++) {
			wy = 0;
			for (k = 0; k < N; k++) {
				if (m[a][k][j] == 0) {
					if (wb[a][k][j][i] == 0) {
						yk[wx][wy] = k;
						xk[wx][wy] = j;
						wy = wy + 1;
					}
				}
			}
			if (wy == 2) {
				wx = wx + 1;
			}
		}
		if (wx == 2) {
			if (yk[0][0] == yk[1][0] && yk[0][1] == yk[1][1]) {
				for (k = 0; k < N; k++) {
					if (k != yk[0][0] && k != yk[0][1]) {
						if (m[a][k][xk[0][0]] == 0) {
							wb[a][k][xk[0][0]][i] = 1;
						}
						if (m[a][k][xk[1][1]] == 0) {
							wb[a][k][xk[1][1]][i] = 1;
						}
					}
				}
				for (k = 0; k < N; k++) {
					if (k != yk[0][0] && k != yk[1][1]) {
						if (m[a][k][xk[0][0]] == 0) {
							局所解析関数(k, xk[0][0], a);
						}
						if (m[a][k][xk[1][1]] == 0) {
							局所解析関数(k, xk[1][1], a);
						}
					}
				}
				for (k = 0; k < N; k++) {
					if (k != xk[0][0] && k != xk[1][1]) {
						if (m[a][yk[0][0]][k] == 0) {
							wb[a][yk[0][0]][k][i] = 1;
						}
						if (m[a][yk[1][1]][k] == 0) {
							wb[a][yk[1][1]][k][i] = 1;
						}
					}
				}
				for (k = 0; k < N; k++) {
					if (k != xk[0][0] && k != xk[1][1]) {
						if (m[a][yk[0][0]][k] == 0) {
							局所解析関数(yk[0][0], k, a);
						}
						if (m[a][yk[1][1]][k] == 0) {
							局所解析関数(yk[1][1], k, a);
						}
					}
				}
			}
		}
	}
}
void リスト法関数(size_t a) {
	size_t i, j, k, s, t;
	for (i = 0; i < N; i++) {
		for (j = 0; j < N; j++) {
			if (m[a][i][j] == 0) {
				if (mx[a][i][j] == 0) {
					cn[a] = 2;
					return;
				}
				if (mx[a][i][j] == 1) {
					m[a][i][j] = rlst[a][i][j][0];
					空欄数[a] = 空欄数[a] - 1;
					if (空欄数[a] == 0)return;
					for (k = 0; k < N; k++) {
						if (m[a][i][k] == 0) {
							wb[a][i][k][m[a][i][j] - 1] = 1;
						}
						if (m[a][k][j] == 0) {
							wb[a][k][j][m[a][i][j] - 1] = 1;
						}
						s = RN * (i / RN) + (k / RN);
						t = RN * (j / RN) + (k % RN);
						if (m[a][s][t] == 0) {
							wb[a][s][t][m[a][i][j] - 1] = 1;
						}
					}
					for (k = 0; k < N; k++) {
						if (m[a][i][k] == 0) 局所解析関数(i, k, a);
						if (m[a][k][j] == 0) 局所解析関数(k, j, a);
						s = RN * (i / RN) + (k / RN);
						t = RN * (j / RN) + (k % RN);
						if (m[a][s][t] == 0) 局所解析関数(s, t, a);
					}
				}
			}
		}
	}
}
void 非対称配列関数(size_t a) {
	size_t sss = rand() % (N * N);
	size_t rnk;
	size_t g = rand() % 12;
	if (g == 0)rnk = 7;
	if (g == 1)rnk = 11;
	if (g == 2)rnk = 13;
	if (g == 3)rnk = 17;
	if (g == 4)rnk = 19;
	if (g == 5)rnk = 23;
	if (g == 6)rnk = 29;
	if (g == 7)rnk = 31;
	if (g == 8)rnk = 37;
	if (g == 9)rnk = 41;
	if (g == 10)rnk = 43;
	if (g == 11)rnk = 47;
	for (size_t i = 0; i < N * N; i++) {
		yy[a][i] = ((i * rnk + sss) % (N * N)) / N;
		xx[a][i] = ((i * rnk + sss) % (N * N)) % N;
	}
}
void 左右対称配列関数(size_t a) {
	size_t ty, gz;
	if (ヒント数 % 2 == 0) {
		gz = rand() % 5;
		if (gz == 0)ty = 0;
		if (gz > 0 && gz < 4)ty = 2;
		if (gz == 4)ty = 4;
	}
	else {
		gz = rand() % 7;
		if (gz < 4)ty = 1;
		if (gz > 3 && gz < 6)ty = 3;
		if (gz == 6)ty = 5;
	}
	//ty = 2;
	size_t s = rand() % 11;
	size_t rnk;
	if (s == 0) rnk = 47;
	if (s == 1) rnk = 7;
	if (s == 2) rnk = 11;
	if (s == 3) rnk = 13;
	if (s == 4) rnk = 17;
	if (s == 5) rnk = 19;
	if (s == 6) rnk = 23;
	if (s == 7) rnk = 29;
	if (s == 8) rnk = 31;
	if (s == 9) rnk = 37;
	if (s == 10) rnk = 41;
	//rnk = 4;
	size_t ss = rand() % N;
	size_t sss = rand() % 36;
	for (size_t i = 0; i < (ヒント数 - ty) / 2; i++) {
		xx[a][i] = ((i * rnk + sss) % 36) / N;
		xx[a][ヒント数 - 1 - i] = 8 - xx[a][i];
		yy[a][i] = ((i * rnk + sss) % 36) % N;
		yy[a][ヒント数 - 1 - i] = yy[a][i];
	}
	size_t tyrnk;
	while (1) {
		tyrnk = rand() % 6;
		if (tyrnk > 2 && tyrnk % 3 != 0)break;
	}
	for (size_t i = 0; i < ty; i++) {
		xx[a][i + (ヒント数 - ty) / 2] = 4;
		yy[a][i + (ヒント数 - ty) / 2] = (i * tyrnk + ss) % N;
	}
}
void 上下対称配列関数(size_t a) {
	size_t ty, gz;
	if (ヒント数 % 2 == 0) {
		gz = rand() % 5;
		if (gz == 0)ty = 0;
		if (gz > 0 && gz < 4)ty = 2;
		if (gz == 4)ty = 4;
	}
	else {
		gz = rand() % 7;
		if (gz < 4)ty = 1;
		if (gz > 3 && gz < 6)ty = 3;
		if (gz == 6)ty = 5;
	}
	//ty = 2;
	size_t s = rand() % 11;
	size_t rnk;
	if (s == 0) rnk = 47;
	if (s == 1) rnk = 7;
	if (s == 2) rnk = 11;
	if (s == 3) rnk = 13;
	if (s == 4) rnk = 17;
	if (s == 5) rnk = 19;
	if (s == 6) rnk = 23;
	if (s == 7) rnk = 29;
	if (s == 8) rnk = 31;
	if (s == N) rnk = 37;
	if (s == 10) rnk = 41;
	//rnk = 4;
	size_t ss = rand() % N;
	size_t sss = rand() % 36;
	for (size_t i = 0; i < (ヒント数 - ty) / 2; i++) {
		yy[a][i] = ((i * rnk + sss) % 36) / N;
		yy[a][ヒント数 - 1 - i] = 8 - yy[a][i];
		xx[a][i] = ((i * rnk + sss) % 36) % N;
		xx[a][ヒント数 - 1 - i] = xx[a][i];
	}
	size_t tyrnk;
	while (1) {
		tyrnk = rand() % 6;
		if (tyrnk > 2 && tyrnk % 3 != 0)break;
	}
	for (size_t i = 0; i < ty; i++) {
		yy[a][i + (ヒント数 - ty) / 2] = 4;
		xx[a][i + (ヒント数 - ty) / 2] = (i * tyrnk + ss) % N;
	}
}
void 点対称配列関数(size_t a) {
	size_t s, rnk, sss;
	s = rand() % 11;
	if (s == 0) rnk = 47;
	if (s == 1) rnk = 7;
	if (s == 2) rnk = 11;
	if (s == 3) rnk = 13;
	if (s == 4) rnk = 17;
	if (s == 5) rnk = 19;
	if (s == 6) rnk = 23;
	if (s == 7) rnk = 29;
	if (s == 8) rnk = 31;
	if (s == 9) rnk = 53;
	if (s == 10) rnk = 61;
	while (1) {
		s = rand() % (ヒント数 / N + 2);
		if ((ヒント数 - s) % 2 == 0) break;
	}
	sss = rand() * 40;
	if (ヒント数 % 2 == 0) {
		for (size_t i = 0; i < ヒント数 / 2; i++) {
			yy[a][i] = ((i * rnk + sss) % 40) / N;
			yy[a][ヒント数 - 1 - i] = 8 - yy[a][i];
			xx[a][i] = ((i * rnk + sss) % 40) % N;
			xx[a][ヒント数 - 1 - i] = 8 - xx[a][i];
		}
	}
	else {
		for (size_t i = 0; i < ヒント数 / 2; i++) {
			yy[a][i] = ((i * rnk + sss) % 40) / N;
			yy[a][ヒント数 - 1 - i] = 8 - yy[a][i];
			xx[a][i] = ((i * rnk + sss) % 40) % N;
			xx[a][ヒント数 - 1 - i] = 8 - xx[a][i];
		}
		yy[a][(ヒント数 - 1) / 2] = 4;
		xx[a][(ヒント数 - 1) / 2] = 4;
	}
}
void 左右上下対称配列関数(size_t a) {
	size_t sss, b, rnk, s, mns;
	size_t kh[16];
	if (ヒント数 % 2 == 0) {
		if (ヒント数 % 4 == 0) {
			s = rand() % 5;
			if (s == 0) rnk = 3;
			if (s == 1) rnk = 5;
			if (s == 2) rnk = 7;
			if (s == 3) rnk = 11;
			if (s == 4) rnk = 13;
			sss = rand() % 16;
			b = ヒント数 / 4 - 1;
			for (size_t i = 0; i < b + 1; i++) {
				kh[i] = (sss + rnk * i) % 16;
			}
			for (size_t i = 0; i < b + 1; i++) {
				yy[a][i] = kh[i] / 4;
				xx[a][i] = kh[i] % 4;
				yy[a][2 * (b + 1) - i - 1] = yy[a][i];
				xx[a][2 * (b + 1) - i - 1] = 8 - xx[a][i];
				yy[a][3 * (b + 1) - i - 1] = 8 - yy[a][i];
				xx[a][3 * (b + 1) - i - 1] = xx[a][i];
				yy[a][4 * (b + 1) - i - 1] = 8 - yy[a][i];
				xx[a][4 * (b + 1) - i - 1] = 8 - xx[a][i];
			}
			return;
		}
		s = rand() % 3;
		if (s < 2) mns = 1; else mns = 3;
		s = rand() % 4;
		for (size_t i = 0; i < mns + 1; i++) {
			xx[a][i] = 4;
			xx[a][2 * mns - 1 - i] = 4;
			yy[a][i] = (s + 3 * i) % 4;
			yy[a][2 * mns - 1 - i] = 8 - yy[a][i];
		}
		b = (ヒント数 - 2 * mns) / 4 - 1;
		s = rand() % 5;
		if (s == 0) rnk = 3;
		if (s == 1) rnk = 5;
		if (s == 2) rnk = 7;
		if (s == 3) rnk = 11;
		if (s == 4) rnk = 13;
		sss = rand() % 16;
		for (size_t i = 0; i < b + 1; i++) {
			kh[i] = (sss + rnk * i) % 16;
		}
		for (size_t i = 0; i < b + 1; i++) {
			yy[a][2 * mns + i] = kh[i] / 4;
			xx[a][2 * mns + i] = kh[i] % 4;
			yy[a][2 * mns + 2 * (b + 1) - i - 1] = yy[a][2 * mns + i];
			xx[a][2 * mns + 2 * (b + 1) - i - 1] = 8 - xx[a][2 * mns + i];
			yy[a][2 * mns + 3 * (b + 1) - i - 1] = 8 - yy[a][2 * mns + i];
			xx[a][2 * mns + 3 * (b + 1) - i - 1] = xx[a][2 * mns + i];
			yy[a][2 * mns + 4 * (b + 1) - i - 1] = 8 - yy[a][2 * mns + i];
			xx[a][2 * mns + 4 * (b + 1) - i - 1] = 8 - xx[a][2 * mns + i];
		}
		return;
	}
	if (ヒント数 % 2 == 1) {
		xx[a][0] = 4;
		yy[a][0] = 4;
		if (((ヒント数 - 1) % 4) == 0) {
			s = rand() % 5;
			if (s == 0) rnk = 3;
			if (s == 1) rnk = 5;
			if (s == 2) rnk = 7;
			if (s == 3) rnk = 11;
			if (s == 4) rnk = 13;
			sss = rand() % 16;
			b = (ヒント数 - 1) / 4 - 1;
			for (size_t i = 0; i < b + 1; i++) {
				kh[i] = (sss + rnk * i) % 16;
			}
			for (size_t i = 0; i < b + 1; i++) {
				yy[a][1 + i] = kh[i] / 4;
				xx[a][1 + i] = kh[i] % 4;
				yy[a][1 + 2 * (b + 1) - i - 1] = yy[a][1 + i];
				xx[a][1 + 2 * (b + 1) - i - 1] = 8 - xx[a][1 + i];
				yy[a][1 + 3 * (b + 1) - i - 1] = 8 - yy[a][1 + i];
				xx[a][1 + 3 * (b + 1) - i - 1] = xx[a][1 + i];
				yy[a][1 + 4 * (b + 1) - i - 1] = 8 - yy[a][1 + i];
				xx[a][1 + 4 * (b + 1) - i - 1] = 8 - xx[a][1 + i];
			}
			return;
		}
		s = rand() % 3;
		if (s < 2) mns = 1; else mns = 3;
		s = rand() % 4;
		mns = 3;
		for (size_t i = 0; i < mns; i++) {
			xx[a][1 + i] = 4;
			xx[a][1 + 2 * mns - 1 - i] = 4;
			yy[a][1 + i] = (s + 3 * i) % 4;
			yy[a][1 + 2 * mns - 1 - i] = 8 - yy[a][1 + i];
		}
		b = (ヒント数 - 1 - 2 * mns) / 4 - 1;
		s = rand() % 4;
		if (s == 0) rnk = 3;
		if (s == 1) rnk = 5;
		if (s == 2) rnk = 7;
		if (s == 3) rnk = 11;
		sss = rand() % 16;
		for (size_t i = 0; i < b + 1; i++) {
			kh[i] = (sss + rnk * i) % 16;
		}
		for (size_t i = 0; i < b + 1; i++) {
			yy[a][1 + 2 * mns + i] = kh[i] / 4;
			xx[a][1 + 2 * mns + i] = kh[i] % 4;
			yy[a][1 + 2 * mns + 2 * (b + 1) - i - 1] = yy[a][1 + 2 * mns + i];
			xx[a][1 + 2 * mns + 2 * (b + 1) - i - 1] = 8 - xx[a][1 + 2 * mns + i];
			yy[a][1 + 2 * mns + 3 * (b + 1) - i - 1] = 8 - yy[a][1 + 2 * mns + i];
			xx[a][1 + 2 * mns + 3 * (b + 1) - i - 1] = xx[a][1 + 2 * mns + i];
			yy[a][1 + 2 * mns + 4 * (b + 1) - i - 1] = 8 - yy[a][1 + 2 * mns + i];
			xx[a][1 + 2 * mns + 4 * (b + 1) - i - 1] = 8 - xx[a][1 + 2 * mns + i];
		}
	}
}
void ハート型配列関数(size_t a) {
	size_t b[N - 1][N - 1];
	for (size_t i = 0; i < 5; i++) {
		yy[a][i] = 8 - i;
		xx[a][i] = 4 - i;
	}
	for (size_t i = 5; i < N; i++) {
		yy[a][i] = yy[a][i - 4];
		xx[a][i] = 8 - xx[a][i - 4];
	}
	yy[a][N] = 3;
	xx[a][N] = 0;
	yy[a][10] = 3;
	xx[a][10] = 8;
	for (size_t i = 11; i < 13; i++) {
		yy[a][i] = 13 - i;
		xx[a][i] = i - 11;
		yy[a][i + 2] = yy[a][i];
		xx[a][i + 2] = 8 - xx[a][i];
	}
	for (size_t i = 15; i < 17; i++) {
		yy[a][i] = i - 14;
		xx[a][i] = i - 13;
		yy[a][i + 2] = yy[a][i];
		xx[a][i + 2] = 8 - xx[a][i];
	}
	yy[a][19] = 3;
	xx[a][19] = 4;
	for (size_t i = 0; i < 20; i++) {
		b[yy[a][i]][xx[a][i]] = 10;
	}
	size_t sa, h;
	sa = ヒント数 - 20;
	for (size_t i = 1; i < 8; i++) {
		h = 0;
		for (size_t j = 1; j < N; j++) {
			if (b[j - 1][i] == 10) h = h + 1;
			if (h == 1 && b[j][i] != 10) b[j][i] = 3;
		}
	}
	size_t k, i, j;
	if (ヒント数 % 2 == 0) {
		for (size_t k = 20; k < 20 + sa / 2; k++) {
			while (1) {
				i = rand() % N;
				j = rand() % 4;
				if (b[i][j] == 3) {
					b[i][j] = 4;
					b[i][8 - j] = 4;
					yy[a][k] = i;
					xx[a][k] = j;
					yy[a][k + sa / 2] = i;
					xx[a][k + sa / 2] = 8 - j;
					break;
				}
			}
		}
		return;
	}
	else {
		while (1) {
			j = 4 + rand() % 4;
			if (b[j][4] == 3) {
				b[j][4] = 4;
				yy[a][20] = j;
				xx[a][20] = 4;
				break;
			}
		}
		if (ヒント数 > 21) {
			for (size_t i = 21; i < 21 + (ヒント数 - 21) / 2; i++) {
				size_t s, t;
				while (1) {
					s = rand() % N;
					t = rand() % 4;
					if (b[s][t] == 3) {
						b[s][t] = 4;
						b[s][8 - t] = 4;
						yy[a][i] = s;
						xx[a][i] = t;
						yy[a][i + (ヒント数 - 21) / 2] = s;
						xx[a][i + (ヒント数 - 21) / 2] = 8 - t;
						break;
					}
				}
			}
		}
	}
}
void 代入関数(size_t a) {
	for (size_t i = 0; i < N2; i++) {
		cm[a][yy[a][i]][xx[a][i]] = m[a][yy[a][i]][xx[a][i]];
	}
}
void 問題作成関数(size_t a) {
	初期化1(a);
	for (size_t i = 0; i < ヒント数; i++) {
		size_t s, t;
		s = yy[a][i];
		t = xx[a][i];
		m[a][s][t] = cm[a][s][t];
		for (size_t j = 0; j < N; j++) {
			if (m[a][s][j] == 0) {
				if (wb[a][s][j][m[a][s][t] - 1] == 0) {
					wb[a][s][j][m[a][s][t] - 1] = 1;
				}
			}
		}
		for (size_t j = 0; j < N; j++) {
			if (m[a][j][t] == 0) {
				if (wb[a][j][t][m[a][s][t] - 1] == 0) {
					wb[a][j][t][m[a][s][t] - 1] = 1;
				}
			}
		}
		for (size_t j = 0; j < N; j++) {
			size_t p, q;
			p = RN * (s / RN) + (j / RN);
			q = RN * (t / RN) + (j % RN);
			if (p != s && q != t) {
				if (m[a][p][q] == 0) {
					if (wb[a][p][q][m[a][s][t] - 1] == 0) {
						wb[a][p][q][m[a][s][t] - 1] = 1;
					}
				}
			}
		}
	}
	for (size_t i = 0; i < N; i++) {
		for (size_t j = 0; j < N; j++) {
			if (m[a][i][j] == 0)局所解析関数(i, j, a);
		}
	}
}
void 初期化0(size_t a) {
	for (size_t i = 0; i < N; i++) {
		for (size_t j = 0; j < N; j++) {
			m[a][i][j] = 0;
			cm[a][i][j] = 0;
			mx[a][i][j] = N;
			for (size_t k = 0; k < N; k++) {
				wb[a][i][j][k] = 0;
			}
		}
	}
}
void 初期化1(size_t a) {
	cn[a] = 0;
	空欄数[a] = N2 - ヒント数;
	hj1[a] = clock();
	for (size_t i = 0; i < N; i++) {
		for (size_t j = 0; j < N; j++) {
			m[a][i][j] = 0;
			//cm[a][i][j] = 0;
			mx[a][i][j] = N;
			for (size_t k = 0; k < N; k++) {
				wb[a][i][j][k] = 0;
			}
		}
	}
}
void 入力順決定関数(size_t g, size_t a) {
	size_t ik, jk, mn = 1000;
	for (size_t i = 0; i < N; i++) {
		for (size_t j = 0; j < N; j++) {
			if (m[a][i][j] == 0) {
				if (mx[a][i][j] <= mn) {
					mn = mx[a][i][j];
					ik = i;
					jk = j;
				}
			}
		}
	}
	y[a][g] = ik;
	x[a][g] = jk;
	局所解析関数(ik, jk, a);
}
void 問題生成関数(size_t g, size_t a) {
	size_t i, j, s, t, p, q, ii, iii, k;
	size_t gy[N], r[N], b[N];
	if (g < 初期配置数) {
		s = yy[a][g];
		t = xx[a][g];
		局所解析関数(s, t, a);
	}
	else {
		入力順決定関数(g, a);
		s = y[a][g];
		t = x[a][g];
		局所解析関数(s, t, a);
	}
	if (mx[a][s][t] == 0)return;
	ii = rand() % mx[a][s][t];
	if (cn[a] == 1)return;
	if (継続 == 0)return;
	for (i = 0; i < mx[a][s][t]; i++) {
		iii = (i + ii) % mx[a][s][t];
		m[a][s][t] = rlst[a][s][t][iii];
		for (j = 0; j < N; j++) {
			gy[j] = 0;
			r[j] = 0;
			b[j] = 0;
		}
		for (j = 0; j < N; j++) {
			if (m[a][s][j] == 0) {
				if (wb[a][s][j][m[a][s][t] - 1] == 0) {
					wb[a][s][j][m[a][s][t] - 1] = 1;
					局所解析関数(s, j, a);
					r[j] = 1;
				}
			}
		}
		for (j = 0; j < N; j++) {
			if (m[a][j][t] == 0) {
				if (wb[a][j][t][m[a][s][t] - 1] == 0) {
					wb[a][j][t][m[a][s][t] - 1] = 1;
					局所解析関数(j, t, a);
					gy[j] = 1;
				}
			}
		}
		for (j = 0; j < N; j++) {
			p = RN * (s / RN) + (j / RN);
			q = RN * (t / RN) + (j % RN);
			if (p != s && q != t) {
				if (m[a][p][q] == 0) {
					if (wb[a][p][q][m[a][s][t] - 1] == 0) {
						wb[a][p][q][m[a][s][t] - 1] = 1;
						局所解析関数(p, q, a);
						b[j] = 1;
					}
				}
			}
		}
		if (継続 == 0)return;
		if (g + 1 < N2) {
			問題生成関数(g + 1, a);
			if (cn[a] == 1)return;
			if (継続 == 0)return;
		}
		else {
			代入関数(a);
			cn[a]++;
			if (cn[a] == 1)return;
			if (継続 == 0)return;
		}
		for (j = 0; j < N; j++) {
			if (r[j] == 1) {
				wb[a][s][j][m[a][s][t] - 1] = 0;
			}
			if (gy[j] == 1) {
				wb[a][j][t][m[a][s][t] - 1] = 0;
			}
			p = RN * (s / RN) + (j / RN);
			q = RN * (t / RN) + (j % RN);
			if (b[j] == 1) {
				wb[a][p][q][m[a][s][t] - 1] = 0;
			}
		}
	}
	m[a][s][t] = 0;
	return;
}
void 局所解析関数(size_t s, size_t t, size_t a) {
	//セルの候補数字を探索する関数
	size_t w = 0;
	for (size_t i = 0; i < N; i++) {
		if (wb[a][s][t][i] == 0) {
			rlst[a][s][t][w] = i + 1;
			w++;
		}
	}
	mx[a][s][t] = w;//候補数字数
}
size_t 検証関数(size_t a) {
	size_t p[N];
	//以下行部分に重複がないか調べている。ある場合は0を返す。
	for (size_t i = 0; i < N; i++) {
		for (size_t j = 0; j < N; j++) {
			p[j] = 0;
		}
		for (size_t j = 0; j < N; j++) {
			p[m[a][i][j] - 1] = 1;
		}
		for (size_t j = 0; j < N; j++) {
			if (p[j] == 0)return(0);
		}
	}
	//以下は列部分に重複がないかを知べている。ある場合は0を返す。
	for (size_t i = 0; i < N; i++) {
		for (size_t j = 0; j < N; j++) {
			p[j] = 0;
		}
		for (size_t j = 0; j < N; j++) {
			p[m[a][j][i] - 1] = 1;
		}
		for (size_t j = 0; j < N; j++) {
			if (p[j] == 0)return(0);
		}
	}
	//以下はブロック部分に重複がないかを調べている。ある場合は0を返す。
	for (size_t i = 0; i < N; i++) {
		for (size_t j = 0; j < N; j++) {
			p[j] = 0;
		}
		for (size_t j = 0; j < N; j++) {
			size_t s, t;
			s = RN * (i / RN) + (j / RN);//ブロック内を動くｙ座標（通常とは逆方向を
			//向いていることに注意）
			t = RN * (i % RN) + (j % RN);//ブロック内を動くｘ座標
			p[m[a][s][t] - 1] = 1;
		}
		for (size_t j = 0; j < N; j++) {
			if (p[j] == 0)return(0);
		}
	}
	return(1);//行・列・ブロックに重複がないときにはじめて1を返している。
}
